Golovnaya hydropower plant is located 80 kilometers south of Dushanbe and has an installed generation capacity of 240 MW, making it the fourth largest hydropower plant in Tajikistan, after Nurek (3,000 MW), Sangtuda 1 (670 MW), and Baipaza (600 MW). Construction began in 1956, with the first unit commissioned in 1962. Since then, except for one unit, the plant has not undergone significant modernization or improvements to maintain its original performance in terms of efficiency, reliability, safety, or to reduce operation and maintenance costs. Consequently, most of the main electro-mechanical and hydro-mechanical equipment is now in poor condition.

The current project, for which FutureWater conducted a climate risk assessment (CRA), aims to include the rehabilitation of generation Unit 4 of the hydropower plant, which was not part of the ongoing efforts. Unit 4 is expected to add approximately 49 MW to the overall plant capacity. The CRA report evaluated the climate risk and adaptation prospects of the additional project and provides recommendations to enhance its adaptability and climate resilience, further securing this investment.

FutureWater supported this project by conducting a comprehensive review of climate and climate change research, studies, reports, and data related to the Golovnaya hydropower plant. Key findings include: (i) the project should be analyzed within the context of the entire Vakhsh River basin and system; (ii) the operations of upstream reservoirs and hydropower facilities will have a greater impact on Golovnaya than climate change itself; (iii) climate change will affect upstream facilities and thereby indirectly impact Golovnaya. The overall conclusion was that for the specific project (rehabilitating hydropower turbines), the climate risk is relatively low.

FutureWater’s impact was contributing to ensuring that the Golovnaya rehabilitation project will be climate-resilient, thereby securing the investment.

The inital Climate Risk Assessment (CRA) by FutureWater in 2021 for the Asian Development Bank (ADB) identified the need for a detailed CRA for the DKSHEP to understand the risk posed by the changing climate on hydropower and the environment. Therefore, the objective of this Climate Risk and Adaptation Assessment (CRA) is to assess the vulnerability of the project components to future climate change and recommend adaptation options for climate-proofing the design. This CRA covers both type 2 adaptation, related to system change and resilience building, as well as type 1 adaptation related to climate-proofing. FutureWater will support ADB to ensure that the project will adequately address climate change mitigation and adaptation in accordance with ADB’s requirements.

FutureWater will make use of state-of-the-art downscaled Coupled Model Intercomparison Project Phase 6 (CMIP6) ensembles, and other relevant hazards and local information to develop this CRA. Insights from the CRA will be used to devise adaptation strategies. FutureWater will also ensure climate resilience measures are incorporated into the detailed design and environmental management planning before finalizing the climate change risk assessment. Together with the client’s engineering and safeguards team (Nepal Electricity Authority), FutureWater will ensure that the detailed design and environmental management plans incorporate all other recommended climate resilience measures and that their implementation is sufficiently detailed including bioengineering techniques, nature-based solutions, and an early warning system. FutureWater will collate the information and work closely with the national geological and GLOF consultants to review all available options for (i) sediment management plan, (ii) upstream catchment management plan, and (iii) emergency preparedness and response plan. FutureWater will provide several capacity-building sessions to the project team on the findings of the initial CRA, and the potential options for climate resilience measures to incorporate in the project design and operation to address the risks identified. Moreover, this project will develop a GHG account and prepare SARD climate change screening and Paris Agreement alignment assessment.

In de afgelopen decennia is efficiënt waterbeheer een belangrijk onderdeel geweest van het waterbeleid van de EU. Dit onderwerp krijgt hernieuwde aandacht in de herziene EU-aanpassingsstrategie van 2021, waarin de noodzaak van een kennisgestuurde benadering van waterbesparende technologieën en instrumenten, zoals efficiënte toewijzing van watervoorraden, wordt benadrukt. Het speciale IPCC-rapport over oceanen en de cryosfeer in een veranderend klimaat (2019) wijst op de combinatie van waterbeheer en klimaatrisico’s als potentiële oorzaken van spanningen over schaarse watervoorraden binnen en over landsgrenzen heen, met name bij concurrerende vraag tussen waterkracht en irrigatie in grensoverschrijdende gletsjer- en sneeuwgevoede stroomgebieden in Centraal-Azië.

De innovatieve aanpak van WE-ACT bestaat uit twee complementaire innovatieacties: de eerste is de ontwikkeling van een gegevensketen voor een betrouwbaar waterinformatiesysteem, dat op zijn beurt de tweede mogelijk maakt, namelijk het ontwerp en de uitrol van een beslissingsondersteunend systeem (DSS) voor de toewijzing van watervoorraden. De gegevensketen voor het betrouwbare waterinformatiesysteem bestaat uit realtime in-situ hydrometeorologische en glaciologische monitoringtechnologie, modellering van het watersysteem (inclusief modellering van wateraanbod en -vraag en watervoetafdrukanalyses) en gletsjermassabalans, datawarehousetechnologie en machine learning.

De uitrol van het DSS voor klimaatrisicogestuurde toewijzing van watervoorraden bestaat uit analyses van belanghebbenden en instellingen, methoden voor waardebepaling van water, de opzet van het waterinformatiesysteem om een gebruiksvriendelijke interface mogelijk te maken, ontwikkeling van gebruiksscenario’s voor watertoewijzing en feedback over watergebruik via nationale beleidsdialogen.

Het werk van FutureWater binnen de WE-ACT-studie zal zich richten op het inschatten van de waterbehoefte en watervoetafdrukken van de verschillende gebruikers en activiteiten binnen het Syr Darya-stroomgebied. Daarom zullen de effecten van watertoewijzing op watervoetafdrukken, onvervulde watervraag en schendingen van milieustromen worden geëvalueerd met behulp van een reeks hydrologische modellen, zoals SPHY en Water Allocation-modellen (WEAP). Dit zal worden gedaan voor zowel de huidige situatie als toekomstige scenario’s.

Voor meer informatie kunt u de WE-ACT projectwebsite bezoeken.

Watervoorraden over de hele wereld staan onder toenemende druk. Onder andere factoren zoals klimaatverandering, stijgende vraag naar voedsel en energie, en verbeterende levensstandaarden hebben geleid tot een zesvoudige toename in wereldwijde wateronttrekkingen in de afgelopen eeuw, met aanzienlijke gevolgen voor de waterkwaliteit en -beschikbaarheid, de gezondheid van ecosystemen, biodiversiteit en sociale stabiliteit.

Door watermodellen te verbeteren en te koppelen aan modellen uit sectoren zoals landbouw en energie, biodiversiteit of sedimenttransport, streeft het SOS-Water-project ernaar de basis te leggen voor een holistisch beoordelingskader voor watervoorraden op verschillende ruimtelijke schalen. Gebaseerd op vijf casestudies van stroomgebieden in Europa en Vietnam – het stroomgebied van de Júcar in Spanje, de regio van de Boven-Donau, de delta’s van de Donau en Rijn, en het stroomgebied van de Mekong – zal een interdisciplinair team van onderzoekers van tien instellingen uit acht landen een multidimensionaal SOS voor water ontwikkelen. Dit kader zal de beoordeling van terugkoppelingen en afwegingen tussen verschillende dimensies van het watersysteem mogelijk maken en helpen bij het aanpakken van dringende mondiale, regionale en lokale uitdagingen.

Naast het verder ontwikkelen van geavanceerde watersysteemmodellen, zal het project een uitgebreide set indicatoren ontwikkelen om de milieukundige, sociale en economische prestaties van watersystemen te beoordelen en te monitoren. De deelnemende onderzoekers zullen samenwerken met regionale en lokale autoriteiten, vertegenwoordigers van watergebruikers, niet-gouvernementele organisaties en burgers om toekomstscenario’s en waterbeheerroutes gezamenlijk te creëren. Door de waterplanning op verschillende niveaus te stroomlijnen, kan worden gegarandeerd dat de watertoewijzing tussen samenlevingen, economieën en ecosystemen economisch efficiënt, sociaal rechtvaardig en veerkrachtig tegen schokken zal zijn.

In samenwerking met projectleider IIASA en partners zoals Universiteit Utrecht en EAWAG, is FutureWater verantwoordelijk voor verschillende taken binnen het werkpakket dat erop gericht is de bestaande technologieën voor aardobservatie te verbeteren om de prestaties van watersystemen te monitoren. Nieuwe toepassingen zullen worden ontwikkeld en getest in de context van de SOS-Water-casestudies van de stroomgebieden van de Mekong en Júcar.

Voor meer informatie over het project kunt u de officiële website bezoeken.

Agriculture is the most water demanding and consuming sector, globally responsible for most of the human induced water withdrawals. This abstraction of water is a critical input for agricultural production and plays an important role in food security as irrigated agriculture represents about 20 percent of the total cultivated land while contributing by 40 percent of the total food produced worldwide.

The FAO Regional Office for Asia and the Pacific (FAO-RAP) is concerned about this increase in water use over the last decades that has led to water scarcity in many countries. This trend will continue as the gap between water demand and supply is projected to widen due to factors such as population growth and economic development, and environmental factors such as land degradation and climate change.

Unfortunately, solutions to overcome the current and future water crisis by looking at the agricultural sector are not simple and have often led to unrealistic expectations. Misconceptions and overly simplistic (and often erroneous) views have been flagged and described over the last recent decades. However, uptake of those new insights by decision makers and the irrigation sector itself has been limited.

The “Follow the Water” project will develop a Guidance Document that summarizes those aspects and, more importantly, quantifies the return flows that occurs in irrigated systems. Those return flows are collected from a wide range of experiments and are collected in a database to be used as reference for new and/or rehabilitation irrigation projects.

The FAO/FutureWater project will also develop a simple-to-use tool to track water in irrigated systems using so-called “virtual tracers”. The tool will respond to the demand for a better understanding the role of reuse of water in irrigated agriculture systems. An extensive training package, based on the Guidance and the Tool, is developed as well.

FAO plays an essential role in backstopping the development of the Guidance and the Tool and promoting. FutureWater takes the lead in development of the Guidance, the Tool and the training package. With this, FAO and FutureWater will contribute to a sustainable future of our water resources.

The Lunyangwa Dam is the source of water supply for Mzuzu City, Ekwendi Town and surrounding areas. Currently, the yield of the dam is lower than the annual average daily water demand from the dam. A quick intervention for this problem is to raise the spillway of the Lunyangwe Dam.

In order to determine the height of the redesigned spillway, FutureWater conducted a hydrological study for the Lunyangwa Dam Catchment to determine flood extremes for several return periods. HEC-HMS was used for calculating the peak volumes and discharges. The input for the HEC-HMS model was retrieved using satellite-based datasets for rainfall and terrain. Furthermore, the flood routing was simulated with an elevation-storage curve. The output of this study will be used for the redesign of the spillway.

The Asian Development Bank (ADB) identified the need for a detailed Climate Risk and Adaptation (CRA) assessment for the DKSHEP to understand the risk posed by the changing climate on hydropower and the environment. Therefore, the objective of this Climate Risk and Adaptation Assessment (CRA) is to assess the vulnerability of the project components to future climate change and recommend adaptation options for climate-proofing of the design. Therefore, this CRA covers both type 2 adaptation, related to system change and resilience building, as well as type 1 adaptation related to climate-proofing This CRA assesses historic trends in relevant climate-related variables and analyses climate projections for the DKSHEP. Based on these projections, an assessment of the current and future climate risks and vulnerabilities relating to the proposed project activities will be outlined. Finally, recommendations will be presented for climate adaptation measures.

The goal of the Asian Development Bank project ‘Renewable Energy for Climate Resilience’ in Bhutan is to diversify Bhutan’s energy portfolio. Bhutan’s power sector almost exclusively relies on hydropower generation. Hydropower, however, is vulnerable to climate change and natural disasters caused by climate change. The first deployment of non-hydro renewables at utility scale in Bhutan will be the first step to diversify the power generation portfolio, increase the resilience against severe weather events such as droughts, and complement the hydropower generation profile during the dry season. Other renewable energy resources such as solar photovoltaic (PV) and wind can complement hydropower in forming a more diversified electricity generation portfolio, which is, in healthy mix, resilient to changes in seasonal weather patterns and weather extremes that can adversely affect power supply.

Within this project ADB develops two solar and one wind plant. FutureWater has undertaken a Climate Risk and Adaptation assessment (CRA) for these power plants, with a two-fold objective:

  1. Validate the underlying rationale for diversification of Bhutan’s energy generation portfolio. The rationale is that more unreliable flows under climate change adversely affect the hydropower generation, in particular in the low flow season outside the monsoon season. This are the seasons with high potential for solar and wind energy, under the current climate conditions. The diversification of Bhutan’s energy generation portfolio is considered as type 2 adaptation, related to system change and resilience building in the climate change context.
  2. Assess the vulnerability of the project components to future climate change and recommend adaptation options for climate-proofing of the design. This is considered as type 1 adaptation, related to climate proofing.

The rationale for diversification is related to the expectation that climate change impacts on the cryosphere and hydrology in Bhutan will lead to less reliable flows, in particular outside the monsoon season. This will make hydropower a less reliable source of energy, which may not be sufficient during the dry season. During these periods outside the monsoon season, the climate in Bhutan is characterized by clear skies and daily patterns of wind. This intuitively makes solar and wind suitable energy sources to complement hydropower.

The CRA concludes that this rationale holds when validated with future scenarios of climate change and hydrological changes. These project more erratic flows, meaning on one hand more extremes on the high end (floods), in itself posing risks for hydropower infrastructure, but also through increasing sediment loads and risks of exposure to landslides and glacier lake outburst floods. On the other hand, a small increase in frequency and length of hydrological droughts is projected. Furthermore, projections of wind speed and incoming solar radiation indicate more or less stable conditions compared to the present day climate, further substantiating the rationale for portfolio diversification.

For adaptation and climate proofing the main recommendation is to verify that the proposed drainage systems at the sites are sized for extreme flows that are 20-30% larger in magnitude than current extremes. This is valid across return periods. The second high priority recommendation is to design foundations of solar, wind, and transmission infrastructure to withstand increased erosion rates and substantially increased risk of landslides in landslide prone areas. A third recommendation is to take into account lower production for solar panels at increased frequency of heat stress, as well as in the sizing of capacity of transmission infrastructure, which may have reduced capacity during periods of high heat stress.

“Gabon is a rapidly developing country that contains substantial amount of intact natural areas and biodiversity, and large untapped natural resource stocks, placing the country at the forefront of a green economic development opportunities. TNC supports the government in preserving Hydrologic Ecosystem Services which are essential to include into development projects as for example hydropower.

This study will assess these services for the Komo basin where certain pressure already exists due to forestry operations and planned hydropower. It will evaluate various management scenarios which may improve and sustain hydrological flow conditions and hydropower options. The analysis will help the government in implementing an integrated water resources management (IWRM) approach in this basin.

FutureWater will deliver this study through hydrological modeling and scenario analysis to assess how hydrological ecosystem services provision in the Komo basin can be improved by a series of potential alternative scenarios based.”

This glacio-hydrological assessment delivered river flow estimates for three intake locations of hydropower plants in Nakra, Georgia. The assessment included the calibration of a hydrological model, daily river discharge simulation for an extended period of record (1980-2015), and the derived flow duration curves and statistics to evaluate the flow operation of hydropower turbines. The daily flow calculations for the three sites (HPP1, HPP2 and HPP3) can be used in the hydropower calculations, and to assess the overall profitability of the planned investment, considering energy prices, demand, etc.

In the Nakra basin, glacier and snow model parameters were tuned to obtain accurate river flow predictions. Also, the latest technology of remote sensing data on precipitation and temperature (product ERA5) was used to reduce potential errors in flow estimates. Even though these flow estimates are useful for short-medium term evaluations on profitability of the planned investment, climate change pose a challenge for long-term evaluations. Glacier-fed and snow-fed systems, such as the Nakra basin, are driven by a complex combination of temperature and precipitation. Due to future increasing temperature, and changing rainfall patterns, glacier and snow cover dynamics change under climate warming. This can lead to shifts in the flows, like a reduction in lowest flows, and higher discharge peaks when the hydrological system shifts towards a more rainfall-runoff influenced system (Lutz et al. 2016). This can jeopardize the sustainability of the project on the long-term. To provide a better understanding of future river flows, it is recommended to develop a climate change impact assessment.