Uzbekistan is one of the fastest-growing economies in Central Asia, driving a steady rise in energy demand. However, the country faces significant power shortages due to increasing consumption, declining efficiency of aging power plants, and mounting climate pressures, particularly in regions like Tashkent, Samarkand, and Sirdarya. In response, Uzbekistan is prioritizing renewable energy development, especially solar power, to reduce its reliance on fossil fuels. With its abundant sunlight, the country is well-positioned to harness solar energy, and several large-scale photovoltaic (PV) projects are currently in progress.

With the support of the Asian Development Bank, Uzbekistan aims to strengthen energy security and promote environmental sustainability by developing three solar PV plants (100 MW, 400 MW, and 500 MW), two substations, two battery energy storage system (BESS) facilities, and associated transmission lines across Samarkand, Bukhara, Jizzakh, Sirdarya, and Tashkent provinces. To identify the exposures and vulnerabilities of these project components to potential climate risks, FutureWater will utilize advanced downscaled Coupled Model Intercomparison Project Phase 6 (CMIP6) ensembles, along with relevant hazard data and local information, to conduct a rapid Climate Risk Assessment (CRA). The insights gained will enable the Asian Development Bank (ADB) to implement effective adaptation measures and ensure climate-resilient development.

Currently, Pakistan’s energy mix consists of 58.8% thermal, 25.8% hydel, 8.6% nuclear, and 6.8% alternative sources, reflecting efforts to diversify from fossil fuels. Pakistan’s installed electricity generation capacity reached 41,557 MW by 2022, with significant growth in transmission line length over the past 5 years. However, the T&D system has not kept pace with the nearly 15,000 MW capacity added during 2017-2021 (ADB, 2024). Despite investments, transmission and distribution losses averaged about 18% over the last 5 years, exceeding the National Electric Power Regulatory Authority’s (NEPRA) 15.3% target. In 2020, 23.7% of generated energy was lost during transmission, distribution, and delivery (ADB, 2024). Notably, transmission and distribution losses exceed 25%, far higher than in comparable countries (GoP, 2017). Therefore, there is an urgent need to upgrade the existing distribution infrastructure to fulfill the energy demands and ensure steady socioeconomic development in the country. ADB will provide financing for four underperforming DISCOs, selected in consultation with the Ministry of Energy: Sukkur Electric Power Company (SEPCO), Hyderabad Electric Supply Company (HESCO), the Multan Electric Power Company (MEPCO), and the Lahore Electric Supply Company (LESCO) to:

  1. to upgrade the critical infrastructure of these DISCOs to reduce technical losses.
  2. to implement revenue protection measures to improve collections. Additionally, the project design includes embedded climate resilience and reform measures to enhance institutional capacity and financial sustainability.

These rehabilitation efforts will also take into account and address the growing impacts of climate change in four DISCOs. FutureWater will make use of state-of-the-art downscaled Coupled Model Intercomparison Project Phase 6 (CMIP6) ensembles, and other relevant hazards and local information to develop this CRA. Insights from the CRA will be used to devise adaptation strategies. Additionally, FutureWater will be reviewing the existing meteorological monitoring network and recommending additional potential monitoring sites for improved surveillance in the country. To further assist the Government of Pakistan, in actualizing its second Nationally Determined Contribution (NDC) agenda which seeks to reduce greenhouse gas (GHG) emissions per unit of GDP by 50% (compared to the level in 2016), by the year 2030, FutureWater will also develop a GHG account and prepare a Paris Agreement alignment assessment.

FutureWater, in collaboration with FAO Pakistan, has been implementing a hands-on training on Water Accounting under the GCF project titled “Transforming the Indus Basin with Climate Resilient Agriculture and Water Management”. Comprising of 7 modules, the capacity building program has been running since December 2023, with both online and in-country training sessions.

The latest in-country session took place from 10th-15th June at the FAO office in Islamabad where 35 participants from both Punjab and Sindh provinces successfully completed Module 5 and Module 6. Module 5 focused on the development of WEAP models for the seven respective spatial scales while the aim of Module 6 was to build and assess different socioeconomic and climate change scenarios. Participants understood the key differences between projections and interventions, and learned how to extract and pre-process climate projections data for generating different SSPs scenarios in WEAP. Similarly, the multidisciplinary groups were able to analyse the gaps between supply and demand based on the initial model results.  

The next module, which is also the last module of the training program, will enable participants to translate the scientific findings into policy action through the development of different knowledge products i.e. infographics and policy briefs. The knowledge products will mainly be designed for decision makers and farmers and will serve as evidence for informed decision making and equitable use of water resources under different constraints. This training will mark the completion of the first round of water accounting which will be subject to improvement based on the in-situ monitoring equipment being installed under this project.  

View of the classroom
Theoretical lesson

Increasing water scarcity continues to threaten the agricultural sector in Asia. To address this critical issue, FAO and its partners have been developing a comprehensive Asia-Pacific Water Scarcity Programme (WSP) since 2019. The program aims to assess the ongoing issue of water scarcity in the region, evaluate potential management options, and assist partner countries in implementing adaptive management in the agricultural water sector using innovative tools and approaches.

Addressing the issue of water scarcity requires a sound understanding and development of water accounts to ensure evidence-based decision-making for equitable use and allocation of water resources under a changing climate. To achieve this, a comprehensive hands-on training program on water accounting will be developed and implemented across four countries: Indonesia, Lao PDR, Vietnam, and Thailand. In collaboration with the Regional Office for Asia and the Pacific (RAP) of the Food and Agriculture Organization of the United Nations (FAO), FutureWater will design and deliver the water accounting training program. This program aims to not only improve participants’ understanding of water accounting but also enable them to use modern and innovative tools to develop water accounts, with a particular focus on quantifying linkages between field interventions and basin-scale hydrology.

Participants will work with tools such as REWAS and Follow the Water (developed by FutureWater in collaboration with FAO) to conduct water accounting in agricultural systems at different scales. Through the use of these tools, participants will be able to estimate real water savings at system and basin scales and analyze the impact of different irrigation schemes on the overall water availability in the system. Moreover, participants will also learn how to access and extract remotely sensed datasets to assess the status of the water resources in the Nam Ngum pilot basin.

As part of the FAO’s Asia-Pacific Water Scarcity Programme (WSP), FutureWater conducts a scoping study to identify opportunities to improve sustainable water resources management in the country. Following this scoping assessment, FutureWater develops bankable investment concept notes for activities to strengthen national capacities to implement policy actions that prepare Mongolia for a water scarce future. As part of the project, a high level stakeholder consultation forum with key government stakeholders and development partners is organized to validate the findings of the assessment and prioritize the investment concepts.

Mongolia has a strong commitment to IWRM, as defined in the 2012 Water Law, and good progress has been made. This includes the establishment of river basin organizations (RBOs) to manage the 29 river basins in the country. Currently, there are 21 operational RBOs. However, these bodies lack the experience needed for implementation of their tasks. Training and professional development of employees of the water basin authorities are of the utmost importance, to enable them to implement the assigned tasks and be better positioned for advancing implementation of Target 6.5 of the 2030 Agenda for Sustainable Development.

 

This week, the second part of the Water Accounting Training for the Agriculture, Climate and Water Sector Organizations in Pakistan has been successfully completed at the Food and Agriculture Organization of the United Nations (FAO) office in Islamabad, Pakistan.

As an agrarian economy that heavily depends on water, it is crucial for Pakistan to adopt a more integrated water management approach and formulate data-driven strategies to avert from the deepening water crisis.

This training has been designed by FutureWater and FAO as part of the Green Climate Fund funded project titled: ‘Transforming the Indus Basin with Climate Resilient Agriculture and Water Management’. Component 1 of this project focuses on enhancing information services for climate change adaptation in the water and agriculture sectors.

This second part of the training is comprised in seven modules and the aim is to enable stakeholders to develop water accounts at different scales. Given the growing issues of water scarcity, climate change impacts and unmet irrigation demands, this water accounting system can aid decision-makers to design evidence-based policies and achieve sustainable water resources management.

In this in-person training of one week, participants further extended their knowledge on how to compute inflows and outflows of a system at using remote sensing and assessing global datasets.

More information about the project can be found here.

Group presentation
Group picture
Theoretic lesson

The second Water Accounting training under FAO’s Water Scarcity Program took place from 13 – 18 November in Bangkok. Participants from various governmental departments and academic institutions gained practical experience in utilizing different geospatial and water resources modeling tools for developing a water account.  

As part of the Water Scarcity Program (WSP), FutureWater designed and delivered a two-phase water accounting training program in Thailand. The WSP, designed by FAO-RAP and partners, aims to bring agricultural water use within sustainable limits and prepare the sector for a productive future with less water. The program aims to assess the ongoing issue of water scarcity in the region, evaluate potential management options, and assist partner countries to implement adaptive management in the agriculture water sector using innovative tools and approaches.  

The first phase of the training primarily focused on introducing and better understanding the concept of water accounting, its components and approaches. Participants worked with tools such as REWAS and Follow the Water (developed by FutureWater in collaboration with FAO) to conduct water accounting in agricultural systems at different scales.  

The second phase of the training aimed at extracting, processing and analysing data for the Pa Sak basin to build a water account. Participants analysed trends in precipitation, evapotranspiration, and land use using Google Earth Engine and developed a WEAP model to assess water availability and shortages under different scenarios. The training was followed by a visit to the Pa Sak basin where the participants gained insights from different water users and managers. These included the water user group at Kaeng Khoi-Ban Mo Joint Management Committee for irrigation, Pa Sak Jolasid dam and hydropower operators, Nong Khae industrial estate managers and provincial waterworks authority officials responsible for water supply.  

In the coming months, FutureWater will focus on providing technical inputs for the regional WSP events and highlight the technical challenges of implementing water accounting and allocation in Southeast Asia for the WSP High Level Technical Meeting scheduled in June 2024. 

Participants working in pairs to analyse precipitation trends during wet and dry seasons in Pa Sak Basin using Google Earth Engine
Developing and interpreting the WEAP model results under different scenarios
Visit to the Jolasid Dam and Hydropower Plant in the Pa Sak Basin

 

 

The issue of water scarcity is intensifying across the Asia Pacific region, posing significant challenges for sustainable agricultural production and water resources management. The Water Scarcity Program (WSP), designed by FAO-RAP and partners, aims to bring agricultural water use within sustainable limits and prepare the sector for a productive future with less water. The program aims to assess the ongoing issue of water scarcity in the region, evaluate potential management options, and assist partner countries to implement adaptive management in the agriculture water sector using innovative tools and approaches.

As part of the WSP, FutureWater will design and deliver a two-phase water accounting training program in Indonesia, Vietnam and Thailand, respectively. The first phase of the training will primarily focus on introducing and better understanding the concept of water accounting, its components and approaches. Participants will also work with tools such as REWAS and Follow the Water (developed by FutureWater in collaboration with FAO) to conduct water accounting in agricultural systems at different scales. Through the use of these tools, participants will be able to estimate real water savings at system and basin scale, and also analyze the impact of different irrigation schemes on the overall water availability in the system. The second phase will consist of participants working on the selected basin in each country to develop a detailed water account. Given the data availability and accessibility issues in the region, the participants will learn how to access, process and analyse remotely sensed datasets using Google Earth Engine.

In addition to the trainings, FutureWater will also provide technical inputs for the regional WSP events on water scarcity and highlight the technical challenges of implemeting water accounting and allocation in south-east Asia for the WSP High Level Technical Meeting to be held in June 2024.

The first annual meeting of BONEX took place from 30 May – 1 June in Jordan where all consortium partners came together to present their progress, highlight challenges and outline the next steps.

The project aims to promote the practical implementation of water, energy, food and ecosystem (WEFe) nexus through context-adapted technological innovations across seven countries in the Mediterranean region. As part of the project, FutureWater has been developing a tool, REWEF (Realistic Evaluation of Water, Energy, Food and Ecosystem nexus), that quantifies the linkages between the four sectors of the WEFe nexus and allows users to assess the impact of different interventions and scenarios on the system.

While the tool is still under development, a preliminary assessment of the demonstration site in the Axarquia region (Spain) was carried out. The impacts of different climate (drought) and socioeconomic (increasing irrigated land and population) scenarios on the water, energy, food and ecosystem sectors in the Axarquia region were assessed and presented at the annual meeting. Coordinators and members leading the Demonstration Projects (DPs) within BONEX expressed their interest in using the tool to analyze the status of the WEFe nexus at their respective sites.

In the coming months, FutureWater will be further developing and testing the tool in close collaboration with the DP leaders to evaluate the WEFe nexus in their respective regions.

For more information about BONEX (funded by PRIMA programme), please click here and also visit the official website.

BONEX consortium members visit the Demonstration Project in Jordan
The Demonstration Project in Jordan consists of solar powered hydroponic farming of cucumbers
Presenting the REWEF tool to the stakeholders at the German Jordanian University (GJU,Madaba)

Last week, the first part of the Water Accounting Training for the Agriculture, Climate and Water Sector Organizations in Pakistan was successfully completed at the Food and Agriculture Organization of the United Nations (FAO) office in Islamabad, Pakistan.

This training has been designed by FutureWater and FAO as part of the Green Climate Fund funded project titled: ‘Transforming the Indus Basin with Climate Resilient Agriculture and Water Management’. Component 1 of this project focuses on enhancing information services for climate change adaptation in the water and agriculture sectors.

FutureWater conducted a capacity needs assesment in order to design a tailor made training that facilitates the development of water accounts at different scales (from basin to water course level) for key stakeholders in Pakistan. In total, approximately 30 participants from federal and provincial government departments (Punjab and Sindh) as well as academia actively participated in the training program.

The training consisted of the following three modules:

  1. Introduction to the components of Water Accounting
  2. Understanding and quantifying water pathways within a domain (using FutureWater’s in-house tools: REWAS and Follow the Water)
  3. Understanding and quantifying water inflows and outflows (using Google Earth Engine for accessing and processing remotely sensed datasets).
In person sessions at FAO office in Islamabad
Theory presentation
Group work discussion